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Abstract—The variations in the electrooculogram (EOG)
caused by eye motion are roughly proportional to the instan-
taneous horizontal and vertical glance angle. This simple linear
correlation is exploited in systems using EOG to control software,
and hardware such as artificial limbs, or wheelchairs. The drift
in the electronics is commonly compensated for by applying a
high-pass filter. Consequently, the remaining EOG signal contains
only blinks and rapid eye movement. However, repeating these
eye gestures voluntarily is exhausting. Our paper presents an
algorithm that estimates the instantaneous glance of a subject,
who wears an EEG cap. The subject is seated in front of a
computer screen in order to control an application by glance.
Because the visual field of interest, in this setting, is the limited
area of the monitor, we can compensate the error in the glance
estimate by detecting outliers. Because no high-pass filter is
applied to the data, the user controls applications simply by
glance, which is comfortable even over extended periods of time.
The numerical evaluation of the experiments with 12 volunteers,
and video recordings of EOG controlled applications demonstrate
the accuracy of our algorithm.

Index Terms—Electrooculography, Electroencephalography,
Human computer interaction.

I. INTRODUCTION

THE front and the back of the human eye sustain an
electric potential difference. The potentials propagate

to the cheeks, forehead, and scalp, where electrooculogram
(EOG), or electroencephalogram (EEG) electrodes can pick
them up. A reorientation of the eyes generally causes a change
in the voltages measured by the electrodes.

Whereas the signal patterns originating from eye movement
are undesired in applications that monitor brain activity, the
patterns constitute a reliable means of control in an EOG
based human-machine interface. A person without correct limb
and facial muscular control might still have the ability to
gesture through eye movement and blinks. Diseases such as
amyotrophic lateral sclerosis, or certain forms of quadriplegic
clinical conditions (spinal cord injury, locked-in syndrom)
render patients with as little forms of expression as blinking
and orienting the eyes. Automating the interpretation of these
gestures can lead to a more autonomous lifestyle and increased
quality of life [1, 2].

Researchers have been particularly successful at detecting
eye blinks in the EOG, and classifying oscillatory eye move-
ments, i.e. sequences of glance directions, for example ”left-
right-center” that are performed over a few seconds. Conse-
quently, these eye gestures would operate a wheelchair [1], a
robot [3], or software for spelling words, and express needs
in a home environment [4-6]. In the future, psychological
research, gaming electronics, consumer electronics, and the
long term examination of eye movements might result in more
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Fig. 1. Linear correlation coefficients of channel measurements with
horizontal (left) and vertical (right) glance direction averaged for 12 subjects
as presented in [14]. The reference electrode is Oz at the back of the head.
Values of ±1 would indicate a perfect linear correlation. The black dots
indicate the location of electrodes between which the values are interpolated.

applications [7]. Compared to video-based eye trackers, EOG
is independent of lighting conditions and also works when
the eye lids are closed [8]. Besides, EOG is used to remove
ocular artifacts from EEG to unveil brain activity, see [9] for
references. The technique presented in our paper does not
categorize as brain computer interface as the control is not
based on the classification of brain activity.

Common within the literature on EOG-based control is the
application of a high-pass filter, with cutoff at a frequency
between 0.05 and 0.2 Hz. The high-pass filter removes the
long-term drift inherent in all channels that are connected to
the scalp, [10]. Over short periods of time, typically less than
10 seconds, the drift is negligible given that the subject is
at rest. During this phase, the variation in EOG is nearly
colinear to the glance angle within the customary field of
view [11, 12], thus linear regression as defined in (1) reliably
transforms EOG to glance direction. However, since the EOG-
based control is required to operate for extended periods of
time, researchers have relied on the classification of oscillatory
eye movements from the high-pass filtered data. One exception
is [3], who performs periodic recalibrations: To reset the
positional control, the user ”fixates on a direct forward gaze
for approximately 1/2 second, then blinks.” Another approach
is presented in [13], that fits the measured velocity profile of
the EEG during a saccade to the average velocity profile during
a standard saccade in order to integrate the eye rate over time
to the glance direction.

Our new approach is motivated by two observations:

1) the majority of EOG-controlled applications are dis-
played on a computer screen to provide feedback with
the shortest amount of delay possible. When the glance
is falsely estimated to lie outside of the screen area, a
simple translation can account for the offset. Drift is



2

Fig. 2. The cascade visualizes the accumulation of EEG at intervals of 15 seconds as the eyes track the cue that moves along the curve. At each location
of the 36 electrodes the voltage is mapped within a square domain at the coordinate corresponding to the cue position.

corrected on the fly.
2) activities such as reading, and watching a movie are

comfortably performed over extended periods of time,
during which the glance targets the changing region
of interest, while blinks occur infrequently and invol-
untarily. Any EOG-based application that creates the
incentive for the same behavioural pattern, is likely to
have low fatiguing effect. Until now, most applications
are based on voluntary blinks and oscillation of glance.

The paper is organized as follows: We advocate the use of
a linear model to estimate eye orientation from raw EEG
data. No filtering is required. The subject- and session specific
model is obtained from a short calibration procedure. In order
to accurately estimate the glance over extended periods of
time (typically more than 10 minutes) on a computer screen,
we introduce a drift compensation that translates outliers
back onto the screen. A simple computation reveals that
our algorithm is potentially invariant under arbitrary shift of
baselines. From the trials with 12 volunteers, we conclude that
our estimation is generally faithful within a tolerance of 5 cm
in horizontal and vertical direction. Finally, we report on two
conventional applications that were successfully controlled by
a subject wearing an EEG cap using our algorithm.

II. METHOD

A. Model

Voltage gradients measured from skin around the eyes
exhibit a nearly perfect linear correlation with the glance
ranging within ±45◦ for left-right and within ±30◦ for up-
down direction [12]. For electrodes further away, located on
the scalp, the correlation coefficients were studied in [14]
and are reproduced in Figure 1. For instance, electrodes on
the temples correlate significantly with the left-right glance,
whereas channels located along the centerline of the scalp
exhibit a significant correlation with the up-down glance.
Our model to estimate the glance from EEG exploits the
cumulative linear correlation with the vertical and horizontal
glance direction of all connected channels.

We assume the EEG amplifier provides the number of n
channels, which are referenced to a ground electrode. For
each channel i = 1, 2, . . . , n, the measured EEG signal mi

is the sum of the effect of the glance gi, and a remaining
signal component ci that is composed of 1) a channel specific,
drifting baseline, 2) potential fluctuation induced by brain
activity, as well as 3) noise. The contributions of 2) and 3)
are of significantly lower amplitude than the glance gi and
have zero mean. We write mi = gi + ci for i = 1, 2, . . . , n.

Fig. 3. Coordinate system of the monitor, with the game Breakout displayed
on the screen

A computer screen is placed in front of the subject as close
as possible given that the glance can still be comfortably
directed into all corners of the screen. Let p = (x, y) denote
the coordinate on the screen towards which the glance is
directed. The coordinate system −1 ≤ x, y ≤ 1 is indicated
in Figure 3. The contribution of the glance gi on channel
i = 1, 2, . . . , n is modeled as gi(p) = βx

i · x + βy
i · y where

βx
i , β

y
i are related to the coefficients shown in Figure 1.

B. Calibration

During the calibration procedure of duration T , the subject
is required to visually trace a moving cue at coordinate
p(t) = (x(t), y(t)) on the computer screen while moving
the head as little as possible. Subsequent to the calibration
procedure, the system tolerates turning and tilting of the head
quite successfully due to our way of drift handling. Because of
linearity, we express the correlation of the measurements mi

and the glance direction (x, y) at time t simply by the matrix
multiplication

(
m1 m2 · · · mn 1

)


αx
1 αy

1

αx
2 αy

2
...

...
αx
n αy

n

αx
0 αy

0

 =
(
x y

)
(1)

The EEG collected during the calibration procedure from t =
0, . . . , T , and the coordinates of the cue upsampled to the rate
of the EEG compile into an overdetermined system of linear
equations. The unknowns αx

i , α
y
i for i = 0, 1, 2, . . . , n are

solved for by minimizing the squared error in (1). The purpose
of the coefficients αx

0 , α
y
0 is to compensate the baseline offset

in all channels. Figure 2 symbolizes the calibration procedure
at different points in time.
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Fig. 4. Glance estimation x̂ over a period of 3 minutes (top), and mapped to the interval [−1, 1] results in the final glance estimation x̂′ (bottom).

The synchronization of the EEG mi with the cue position
p on the screen are crucial in (1). Common practice is to
send trigger pulses to the amplifier via serial port messaging.
However, there remains a bias that depends on the graphics
system: A single LCD screen might respond faster than a
stereo display. So instead, we mount a photodiode circuit in
front of the display to determine the lag between vision and
EEG. The circuit consists of a photodiode, and a resistor
only, and feeds directly into one of the spare channels of
the amplifier. Periodic flashes on the display beneath the
photodiode result in pulses of 100µV amplitude, and give
means of analog synchronization. Because we have used this
design principle successfully to detect delicate P300 patterns,
we are convinced that the EEG is not altered by connecting
a weak active electronic component to the amplifier. The
photodiode circuit is not required after calibration, as simply
the most recent EEG available is used to estimate the glance
direction.

C. Algorithm

Subsequent to the calibration procedure, we assume that the
position p = (x, y) of the glance on the monitor is unknown.
However, having solved the linear system defined by (1), the
coefficients αx

i , α
x
i for i = 0, 1, 2, . . . , n are at hand to obtain

an estimate p̂ = (x̂, ŷ) using the most recent EEG data mi.
We simply evaluate

(
x̂ ŷ

)
=

(
m1 m2 · · · mn 1

)
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...
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0


(2)

Since the signal induced by brain activity as well as the
noise are assumed to have zero mean, these contributions are
conveniently annihilated by averaging the results of (2) for
measurements mi of the most recent 0.1 sec.

As discussed in [20], the measurements mi might be subject
to drift in the baselines. Consequently, the estimated position p̂
is likely to be offset to the actual glance position after a short
period of time. We make the assumption, that the subject’s

glance is directed to a point on the computer screen, thus, the
estimated position should not be located outside the screen.
As soon as (2) yields a coordinate x̂, ŷ outside the coordinate
area of the screen −1 ≤ x̂, ŷ ≤ 1, we introduce a correction
by translating each coordinate back into the valid area with
the minimum shift necessary. This corrective term is applied
to subsequent estimations until the condition −1 ≤ x̂, ŷ ≤ 1
is violated again.

The horizontal and vertical correction mechanisms are inde-
pendent and identical, thus we only describe the compensation
that corrects the horizontal glance estimation: We introduce a
variable qx to represent the offset of a window of view along
the x-axis. Initially, we set qx = 0. Instead of x̂, we define
x̂′ = x̂−qx to be the estimated glance position on the screen. If
during the process x̂′ lies outside the screen, we simply update
qx. Specifically, if x̂′ = x̂−qx < −1, we redefine qx := x̂+1.
On the other hand, if 1 < x̂ − qx, we update qx := x̂ − 1.
With the modified value qx the estimation x̂′ = x̂ − qx is
guaranteed to be within the bounds of the screen coordinate
system [−1, 1]. Analogous for qy. The final glance estimate is
defined as p̂′ = (x̂′, ŷ′).

Figure 4 shows an example how x̂ and x̂′ might evolve in
practice.

D. Analysis

There are different circumstances that generally lead to a
deterioration of the approximation (2): turning of the head,
mimic, or drift in the electrodes. However, our experiments
suggest that all of these artifacts can be compensated using
the strategy above. In fact, a simple computation reveals that
adding constant offsets δi to the measurements mi for i =
1, 2, . . . , n can be compensated by our algorithm. Again, we
demonstrate this only for the x-axis:

αx
0 +

n∑
i=1

(mi + δi)α
x
i = αx

0 +
n∑

i=1

miα
x
i︸ ︷︷ ︸

x̂

+
n∑

i=1

δiα
x
i︸ ︷︷ ︸

c

= x̂+ c

(3)
and x̂′ = x̂ + c − qx. By allowing for qx = c, then x̂′ =
x̂+ c− c = x̂. Thus, adding constant offsets δi to mi do not
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Fig. 5. Probability distribution of estimation error e(t) averaged from 12
subjects. Top: Electrodes X2 and X3 are connected 2 cm below the eyes.
Bottom: No electrodes below the eyes.

necessarily affect the estimation. The offsets δi represent the
alterations in the baselines due to drift.

Remark: A higher than linear order approximation of the
screen coordinates through terms such as m2

i ,m
3
i in (1), spoils

the unification of change in baselines into a single unknown
c =

∑n
i=1 δiα

x
i . Therefore, the simple drift compensation

carried out above does not trivially extend to higher order
models. [20] uses a quadratic approximation, and omits drift
compensation.

III. EXPERIMENTAL RESULTS

A. Subjects and Materials

The following experiments have been approved by the
human research ethics committee of Curtin University under
the reference SMEC-18-10. Twelve subjects aged between
18 and 45 participated in the experiments voluntarily, after
they had given written consent. They had the right to leave
the recording session at any time. Their anonymity were
guaranteed.

The subject is seated in front of a 22” monitor with a
distance of 60 cm between forehead and screen. The screen
is 47.3 cm wide and 29.7 cm high. Thus, the left-right glance
angle ranges between ±21.5◦, and the up-down glance angle
is between ±13.9◦.

To acquire the EEG, we use the 40 channel monopolar
digital amplifier NuAmps of which n = 36 channels are
effectively connected to the subject. Optionally, two additional
EOG electrodes labeled X2 and X3 are placed 2 cm below
the left and right eye respectively. The amplifier links to the
computer via USB. The measurements mi for i = 1, 2, . . . , n
are transmitted in packets covering time intervals of 0.2 sec,
i.e. data packets are received by the controlling computer at a
rate of 5 Hz. There is an additional delay of about 0.16 sec
until the software that subscribed to the amplifier is notified
that data is available.

Fig. 6. Ordering of electrodes that minimize the maximum of horizontal and
vertical estimation error obtained by greedy optimization. The dashed lines
correspond to the ordering of electrodes mirrored along the centerline of the
head for the purpose of comparison. Top: Electrodes X2 and X3 are connected
2 cm below the eyes. Bottom: No electrodes below the eyes.

Fig. 7. Location of the 8 most significant electrodes on the head. Left:
Electrodes X2 and X3 are connected 2 cm below the eyes. Right: No
electrodes below the eyes.

B. Numerical evaluation

During calibration, each subject traces a moving cue with
coordinates p(t) on the screen over a period of T = 2 minutes
while holding the head still. The curve p(t) is displayed in
Figure 2. The collected EEG data mi for i = 1, 2, . . . , n is
used to obtain the coefficients αx

i , α
y
i for i = 0, 1, 2, . . . , n

that minimize the squared error in (1). Shortly afterwards, the
subject traces the moving cue p(t) again. The EEG data mi

from the second pass together with the coefficients αx
i , α

y
i are

used to simulate the performance of the algorithm in Section
II-C. The output of the algorithm is the estimated target of
glance p̂′(t) in screen coordinates. We scale the difference
d(t) = p(t) − p̂′(t) = (dx(t), dy(t)) according to the actual
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dimensions of the monitor to formulate the error in [cm] as

e(t) = (23.65 · dx(t), 14.85 · dy(t)) (4)

The probability distribution of each coordinate of e(t) aver-
aged over 12 subjects is shown in Figure 5, the variances
are listed in Table I individually. The correlation between
horizontal and vertical approximation quality is significant.
The standard deviation of the average error is less than 3.5
cm in each coordinate, which equivalents to 3.4 degrees of
arc. The accuracy of glance estimation using traditional EOG
equipment (six electrodes closely placed around the eyes) are
stated for comparison: [15] reports a mean error of 1.8 degrees
of arc horizontally, and 3.1 degrees vertically; [16] reports a
mean deviation of ±3.3 cm. These ratings serve as a guideline
for the design of EOG controlled applications.

The estimation algorithm is defined for any subset of
electrodes. Using the recordings described above, we simulate
the accuracy of the estimation on subsets of electrodes. We
investigate which electrodes are most valuable to simultane-
ously minimize the error in left-right and up-down glance.
Using greedy optimization, we minimize

12∑
j=1

max{var exj (t), var e
y
j (t)} (5)

where ej(t) denotes the error function for subject j =
1, 2, . . . , 12: starting with an empty subset of electrodes, each
iteration we add the respective electrode that reduces (5) most.
This process yields a priority list of electrodes, see Figure 6.
For instance, if the system ought to run with 9 electrodes
only, our evaluation suggests to connect FT9, F8, X3, Fp2,
FT10, Fp1, X2, C4, and ground GND. The configuration may
be mirrored along the centerline of the head without loss of
precision.

TABLE I
VARIANCE OF ESTIMATION ERROR IN [cm2]

using X2, X3 without X2, X3
subject id j left-right up-down left-right up-down

1 8.265 9.348 8.696 13.215
2 19.261 13.146 22.627 28.866
3 16.146 14.425 16.792 27.840
4 4.231 9.750 5.288 20.281
5 7.065 11.548 7.453 22.460
6 5.562 11.909 5.886 19.723
7 13.040 14.101 14.057 28.596
8 9.259 10.648 11.157 33.778
9 2.174 8.430 2.105 15.958

10 10.108 12.091 12.231 24.787
11 13.205 13.616 15.053 27.776
12 16.430 14.260 17.373 29.466

average 10.395 11.939 11.560 24.396

C. Benchmarks

Software to spell words is a popular benchmark among
applications controlled by EOG [6, 7]. Our spelling software

Fig. 8. Volunteer spelling a sentence using our English dictionary based
spelling software - snapshot from [18].

demonstrates the reliability and convenience of our novel drift
compensation. The letters of the English alphabet are aligned
sequentially along an ellipse on the screen (see Figure 8).
This alignment increases the probability that an offset in the
estimation of glance due to drift resulting in a position outside
of the screen, is corrected. In addition, our speller is dictionary
based, which generally eases the selection of characters after
the first few letters of a word have been spelled. Figures
4 exhibits the coordinates of x̂ and x̂′ for a sample trial.
A calibration procedure of 1 minute duration preceedes the
spelling.

In a recording of 27 minutes duration 358 characters
(including spaces) were spelled. This is equivalent to 13.25
characters per minute with an accuracy of 100%. The average
number of characters to choose from was N = 17.4, the
average duration for a character selection was T = 4.7
seconds, and the selection was correct with a probability of
P = 0.98. (Errors could be corrected by a backspace function.)
In terms of the information rate derived from [17], the number
of bits transferred per second were

1

T

(
log2 N + P log2 P + (1− P ) log2

1− P

N − 1

)
= 0.83

bits
sec

.

(6)
For comparison: The EOG controlled speller in [5] allows

subjects to spell 5 letters in 24.7 sec with perfect accuracy.
[6] report on spelling a sentence with 40 Japanese characters
in 331.4 sec.

Another classic is the game Breakout, see Figure 3 and [18]:
The game is about positioning a slider on the bottom of the
screen to bounce off a ball. The control in our implementation
relies only on the correct estimation of x-glance. To create
an incentive for the subject to vary the glance along the x-
axis and to reach the boundary of the screen, the ball never
bounces off vertically. The gameplay consists only of a single
state and is intuitive. Playing the game has been the favourite
activity among the 12 volunteers who tested our EEG system.
In a public demonstration of our system, a subject controlled
the game for over 90 minutes with only few breaks and
recalibrations in between.
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IV. CONCLUSIONS

Previous EOG-based control schemes applied a high-pass
filter to overcome the drift in the voltage measurements.
Because the filter removes any constant offset, these schemes
allow only for velocity control: rapid eye movements of the
subject are recognized, but steady glance is not encoded.
Therefore, EOG-based applications typically consist of a set of
states. Transitions between the states occur when the subject
oscillates the glance direction, or blinks [5, 6, 19]. However,
fast oscillation of gaze direction, or frequent eye blinking
is almost, but not quite, entirely unlike comfortable over an
extended period of time.

In contrast, our algorithm does not filter the data. The
subject controls the application by simply glancing at a target
location on a computer screen, i.e. via position control. As
a consequence, our applications use fewer states, and are
more seamless to operate. The numerical evaluations and
the performance of our benchmark applications suggests that
control via glance direction is both more accurate and less
exhausting than control via rapid eye gestures. The error in the
position estimate is typically less than 5 cm in each coordinate.

Researchers have custom built EOG circuits, in order to
reduce the cost and complexity of hardware [4, 5]. We
look forward to learn about applying our algorithm on this
specialized hardware.

[20] aims at the removal of eye artifact in EEG through the
combination of EEG with an eye tracker to allow for single
trials experiments. The mathematical model relates glance and
eye artifacts in a 2nd order approximation, that is established
by a Kalman filter. The method requires 20 to 30 seconds
of calibration, that is followed by a period of 10 seconds of
operation. The authors claim to yield better results than PCA,
or SOBI. The authors report that the parameters of the Kalman
filter have to be preselected in order to converge. The glance
estimation presented in this paper has a smaller calibration-
to-operation ratio and is numerically stable. In the future, we
hope to show that our algorithm benefits the removal of eye
artifacts from EEG.
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