
Animation of Skeletons with Hinges and Spherical Joints

A derivation by Jan Hakenberg dedicated to Nikolai Sperling.

Abstract: We derive an algorithm to animate a skeleton of rigid bodies that are linked by hinges and spherical joints.

Over the course of the simulation, the total linear momentum, and the total angular momentum are invariant. If desired,

the algorithm incorporates intrinsic torques of the joints such as friction, and motor control. Otherwise, the total kinetic

energy is invariant, too.

download this document and supplemental material from www.hakenberg.de

ü Types of joints

We intend to animate skeletons of rigid bodies that are linked by any combination of hinges and spherical joints. A

hinge has a distinct axis of rotation, around which the attached bodies rotate relative to each other. Therefore, we

visualize a hinge by a cylinder. The levers of a spherical joint are free to revolve around any axis relative to each other.

We represent a spherical joint by a sphere.

Our article starts by considering skeletons with hinges only. However, the introduction of spherical joints turns out to

be simple at a later point: the vector that formerly represented the axis of a hinge is just set to zero.

ü Topology of the skeleton

The skeleton shall consist of n + 1 rigid bodies that are pairwise linked by n hinges. (Later, any hinge can be replaced

by a spherical joint.) The topology of the skeleton resembles a tree, i.e. a connected graph with no circles. We enumer-

ate the bodies with the index i = 1, 2, ..., n + 1, and we enumerate the hinges using j = 1, 2, ..., n. The connectivity of

the skeleton is encoded in the Hn, 2L-matrix E, where row j of E contains the indices of the two bodies connected by

hinge j. From E we construct the Hn, n + 1L-matrix s with entries as 

s j,i =

+1 for i = EH j, 1L
-1 for i = EH j, 2L
0 otherwise
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Example: The skeleton depicted above serves as an example throughout the document. The skeleton consists of 3

bodies and n = 2 hinges. Using the indexing as in the graphics, the topology is encoded by

E =
ikjjj 1 2

2 3
y{zzz and s =

ikjjj 1 -1 0

0 1 -1
y{zzz.

ü Generic equations of motion

The state of the body i = 1, 2, ..., n + 1 is defined by the following variables:

pi center of mass in world coordinates • (3)-vector

Ri orientation transforming from object to world coordinates • orthogonal (3,3)-matrix

vi linear velocity in world coordinates • (3)-vector

wi angular velocity in object coordinates • (3)-vector

Ii inertia tensor • constant symmetric (3,3)-matrix

mi mass • constant real value, greater than zero

The dynamics of each body i are determined by

ai linear acceleration in world coordinates • (3)-vector

ti torque in object coordinates • (3)-vector

The entities pi, Ri, vi, wi, ai, ti depend on time t, while the inertia and mass Ii, mi are assumed to be constant. The linear

motion results from the differential equations 

dt vi = ai

dt pi = vi

The angular motion is governed by the differential equations 

dt wi = Ii
-1.H-Wi.Ii.wi + tiL 

dt Ri = Ri.Wi 

where W is a skew-symmetric (3,3)-matrix composed of the three entries of w as

W =
ikjjjjjjjj 0 -w3 w2

w3 0 -w1

-w2 w1 0

y{zzzzzzzz 
Example: In the illustrations, the ellipsoids visualize the inertia tensor Ii. The extensions of the shape correspond to the

three eigenvalues of Ii. The center of mass pi is located in the center of the ellipsoid.
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ü Constraints by hinges

The location and alignment of the hinge j = 1, 2, ..., n is constant with respect to the two bodies EH j, 1L, and EH j, 2L,
the hinge connects. We define 

l
`

j,1 location of hinge j in object coordinates of body EH j, 1L • constant (3)-vector

l
`

j,2 location of hinge j in object coordinates of body EH j, 2L • constant (3)-vector

and 

z̀ j,1 axis of hinge j in object coordinates of body EH j, 1L • constant (3)-vector of norm 1

z̀ j,2 axis of hinge j in object coordinates of body EH j, 2L • constant (3)-vector of norm 1

For the purpose of enumeration, we define additional vectors l j,i for i = 1, 2, ..., n + 1 via 

l j,i =

l
`

j,1 for i = EH j, 1L
l
`

j,2 for i = EH j, 2L
0 otherwise

 z j,i =

z̀ j,1 for i = EH j, 1L
z̀ j,2 for i = EH j, 2L
0 otherwise

 

Example: For joint j = 2 of the skeleton depicted above, we have l2,1 = 0, but l2,2 = l
`
2,1, and l2,3 = l

`
2,2. Analogous,

z2,1 = 0, but z2,2 = z̀2,1, and z2,3 = z̀2,2. 

Henceforth,  we  use  the  shorthand  j1 = EH j, 1L  and  j2 = EH j, 2L.  For  instance,  pj1 = pEH j,1L  and  z j,j2 = z j,EH j,2L.  The

hinges shall not separate over the course of the simulation. At any time t, we demand 

(1) pj1 + Rj1.l j,j1 = pj2 + Rj2.l j,j2 for j = 1, 2, ..., n

Rj1.z j,j1 = Rj2.z j,j2 

The time derivatives dt of these equations are 

(2) vj1 + Rj1.Wj1.l j,j1 = vj2 + R j2.Wj2.l j,j2 for j = 1, 2, ..., n

Rj1.Wj1.z j,j1 = Rj2.Wj2.z j,j2 

Finally, another application of dt yields the relations 

(3) aj1 + Rj1.Wj1.Wj1.l j,j1 - Rj1.L j,j1.dt  wj1 = aj2 + R j2.Wj2.Wj2.l j,j2 - Rj2.L j,j2.dt wj2 for j = 1, 2, ..., n

Rj1.Wj1.Wj1.z j,j1 - R j1.Z j,j1.dt  wj1 = Rj2.Wj2.Wj2.z j,j2 - Rj2.Z j,j2.dt wj2 

where we have substituted the cross product by vector l j,i, z j,i with the skew-symmetric (3,3)-matrix L j,i, Z j,i composed

as
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L j,i =

ikjjjjjjjjj
0 -l j,i3 l j,i2

l j,i3 0 -l j,i1

-l j,i2 l j,i1 0

y{zzzzzzzzz and Z j,i =

ikjjjjjjjjj
0 -z j,i3 z j,i2

z j,i3 0 -z j,i1

-z j,i2 z j,i1 0

y{zzzzzzzzz 
The relations (1), and (2) are meaningful constraints on the initial configuration of the skeleton: the animation launches

with the hinges touching and well aligned, and not about to be torn apart. From (3), we derive linear accelerations and

torques on the n + 1 bodies that ensure (1) and (2) over the course of the animation. 

ü Dynamic impact at hinges

To model friction and motor control at joint j, we introduce 

e j intrinsic torque at joint j in world coordinates • (3)-vector

If joint j revolves frictionless and passively, we set e j = 0. In general, we propose the expression

e j = -m j @R j1.wj1 - Rj2.wj2D + b j Rj1.z j,j1 

where m j ¥ 0 is the friction coefficient, and b j is the torque of the motor attached to hinge j.

In each timestep, we compute (3)-vectors c j, d j  in world coordinates for all hinges j = 1, 2, ..., n. The vectors c j, d j

shall contribute to the linear accelerations and torques of the two bodies j1 = EH j, 1L, and j2 = EH j, 2L, that share the

joint j. To preserve the total linear and angular momentum, the contribution is with alternating signs as 

aj1 += mj1
-1 c j for j = 1, 2, ..., n 

aj2 -= mj2
-1 c j

and

tj1 += L j,j1.R j1
-1.c j + Z j,j1.Rj1

-1.d j + Rj1
-1.e j for j = 1, 2, ..., n 

tj2 -= L j,j2.R j2
-1.c j + Z j,j2.Rj2

-1.d j + Rj2
-1.e j 

In total, the body i is subject to a linear acceleration ai and torque ti of 

(4) ai = mi
-1 S j=1

n  s j,i c j for i = 1, 2, ..., n + 1 

ti = S j=1
n  s j,iHL j,i.Ri

-1.c j + Z j,i.Ri
-1.d j + Ri

-1.e jL 

Example: The linear accelerations and torques of the four bodies in the skeleton above are of the form 

a1 = m1
-1H+c1L

a2 = m2
-1H-c1 + c2L

a3 = m3
-1H-c2L  t1 = +L1,1.R1

-1.c1 + Z1,1.R1
-1.d1 + R1

-1.e1

t2 = -L1,2.R2
-1.c1 - Z1,2.R2

-1.d1 - R2
-1.e1 + L2,2.R2

-1.c2 + Z2,2.R2
-1.d2 + R2

-1.e2

t3 = -L2,3.R3
-1.c2 - Z2,3.R3

-1.d2 - R3
-1.e2
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Theorem:  The linear  acceleration ai  and torque ti  for  i = 1, 2, ..., n + 1 as  assigned in equations (4)  result  in  the

conservation of the total linear momentum, and total angular momentum of the skeleton. If all joints revolve friction-

less and passively, i.e. e j = 0 for all j = 1, 2, ..., n, the total kinetic energy is invariant, too.

Proof. The assignments (4) annihilate the time derivative dt of the total linear momentum 

Si=1
n+1 mi ai = Si=1

n+1 mi mi
-1 S j=1

n  s j,i c j = S j=1
n Si=1

n+1 s j,i c j = S j=1
n c j - S j=1

n c j = 0 

and also the derivative dt of the total angular momentum 

Si=1
n+1 piμ Hmi aiL + Ri.Wi.Ii.wi + Ri.Ii.dt wi

= Si=1
n+1 piμ Hmi aiL + Ri.Wi.Ii.wi + Ri.Ii.@Ii

-1.H-Wi.Ii.wi + tiLD
= Si=1

n+1 piμ Hmi aiL + Ri.ti

= S j=1
n  pj1 μ c j + R j1.@l j,j1 μ HRj1

-1.c jL + z j,j1 μ HRj1
-1.d jL + Rj1

-1.e jD -

pj2μ c j - Rj2.@l j,j2 μ HRj2
-1.c jL + z j,j2μ HR j2

-1.d jL + Rj2
-1.e jD

= S j=1
n  pj1 μ c j + HR j1.l j,j1Lμ c j - pj2 μ c j - HRj2.l j,j2Lμ c j + HR j1.z j,j1 - R j2.z j,j2Lμd j + e j - e j

= S j=1
n Hpj1 + Rj1.l j,j1 - pj2 - Rj2.l j,j2Lμ c j + 0μd j + 0

= S j=1
n  0μ c j

= 0

 

making use of  the relation Q.@aμ HQ-1.bLD = HQ.aLμb  for  any (3)-vectors  a, b  and orthogonal  (3,3)-matrix Q.  The

derivative dt of the total kinetic energy simplifies to

Si=1
n+1 mi vi.ai + wi.Ii.dt  wi

= Si=1
n+1 S j=1

n  mi mi
-1 s j,i vi.c j + wi.Ii.Ii

-1.H-Wi.Ii.wi + s j,i L j,i.Ri
-1.c j + s j,i Z j,i.Ri

-1.d j + s j,i Ri
-1.e jL

= Si=1
n+1 S j=1

n  s j,i vi.c j - wi.Wi.Ii.wi + s j,i wi.L j,i.Ri
-1.c j + s j,i wi.Z j,i.Ri

-1.d j + s j,i wi.Ri
-1.e j

= S j=1
n  Si=1

n+1 s j,i@vi + wi.L j,i.Ri
-1D.c j + s j,i d j.Ri.Wi.z j,i + s j,i e j.Ri.wi

= S j=1
n @vj1 + Rj1.Wj1.l j,j1 - vj2 - Rj2.Wj2.l j,j2D.c j + d j.@Rj1.Wj1.z j,j1 - R j2.Wj2.z j,j2D + e j.@Rj1.wj1 - Rj2.wj2D

= S j=1
n  0. c j + d j .0 + e j.@Rj1.wj1 - R j2.wj2D

= S j=1
n  e j.@Rj1.wj1 - Rj2.wj2D

 

because  wi.Wi = wi ä wi = 0,  wi.L j,i.Ri
-1 = -Ri.L j,i.wi = Ri.Wi.l j,i,  analogous,  wi.Z j,i.Ri

-1 = Ri.Wi.z j,i,

Si=1
n+1 s j,i = s j,j1 + s j,j2, and equations (2). If e j = 0 for all j = 1, 2, ..., n, the total kinetic energy is invariant. 

Remark: Each conservation law is granted by a different argument: 

total linear momentum : topology s j,j1 + s j,j2 = 0

total angular momentum : position of joint equations H1L
total kinetic energy : velocity of joint equations H2L  

At this point, the remaining issue is the computation of the vectors c j, d j  for j = 1, 2, ..., n. To solve for these 6 n

unknowns, we substitute the terms (4) into equations (3).  The vectors c j, d j  are determined by a linear system of

equations.

We convert the terms (4) into the notation of equations (3): From ai = mi
-1 S j=1

n s j,i c j, we yield 

aj1 = mj1
-1 Sk=1

n  sk,j1 ck  for j = 1, 2, ..., n 

aj2 = mj2
-1 Sk=1

n  sk,j2 ck  
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Further,  we  substitute  ti = S j=1
n  s j,i@L j,i.Ri

-1.c j + Z j,i.Ri
-1.d j + Ri

-1.e jD  into  the  differential  equation

dt wi = Ii
-1.H-Wi.Ii.wi + tiL and yield

dt wj1 = Ij1
-1.H-Wj1.Ij1.wj1 + Sk=1

n  sk,j1@Lk,j1.Rj1
-1.ck + Zk,j1.Rj1

-1.dk + Rj1
-1.ekDL for j = 1, 2, ..., n 

dt wj2 = Ij2
-1.H-Wj2.Ij2.wj2 + Sk=1

n  sk,j2@Lk,j2.Rj2
-1.ck + Zk,j2.Rj2

-1.dk + Rj2
-1.ekDL 

The substitution of aj1, and dt wj1 into the lhs of the equations (3) results in Hmj1
-1 Sk  sk,j1 ckL + Rj1.Wj1.Wj1.l j,j1 - Rj1.L j,j1.Ij1

-1.H-Wj1.Ij1.wj1 + Sk sk,j1@Lk,j1.R j1
-1.ck + Zk,j1.Rj1

-1.dk + Rj1
-1.ekDL

= Hmj1
-1 Sk  sk,j1 ckL + Rj1.Wj1.Wj1.l j,j1 + Rj1.L j,j1.Ij1

-1.W j1.Ij1.wj1 -

Rj1.L j,j1.Ij1
-1.Sk  sk,j1@Lk,j1.Rj1

-1.ck + Zk,j1.Rj1
-1.dk + Rj1

-1.ekD
= @Sk  sk,j1 H@mj1

-1 1 - Rj1.L j,j1.Ij1
-1.Lk,j1.Rj1

-1D.ck - R j1.L j,j1.Ij1
-1.Zk,j1.Rj1

-1.dk - Rj1.L j,j1.Ij1
-1.Rj1

-1.ekLD +

Rj1.Wj1.Wj1.l j,j1 + Rj1.L j,j1.Ij1
-1.Wj1.Ij1.wj1

 

and secondly

Rj1.Wj1.Wj1.z j,j1 - R j1.Z j,j1.Ij1
-1.H-Wj1.Ij1.wj1 + Sk sk,j1@Lk,j1.R j1

-1.ck + Zk,j1.Rj1
-1.dk + Rj1

-1.ekDL
= Rj1.Wj1.Wj1.z j,j1 + R j1.Z j,j1.Ij1

-1.W j1.Ij1.wj1 - Rj1.Z j,j1.Ij1
-1.Sk  sk,j1@Lk,j1.Rj1

-1.ck + Zk,j1.R j1
-1.dk + Rj1

-1.ekD
= @Sk  sk,j1H-Rj1.Z j,j1.Ij1

-1.Lk,j1.Rj1
-1.ck - Rj1.Z j,j1.Ij1

-1.Zk,j1.Rj1
-1.dk - Rj1.Z j,j1.Ij1

-1.Rj1
-1.ekLD +

R j1.Wj1.Wj1.z j,j1 + Rj1.Z j,j1.Ij1
-1.Wj1.Ij1.wj1

 

with 1 as the identity (3,3)-matrix. Analogous, the substitution of aj2, and dt wj2 into the rhs of (3) results in@Sk  sk,j2 H@mj2
-1 1 - Rj2.L j,j2.Ij2

-1.Lk,j2.Rj2
-1D.ck - Rj2.L j,j2.Ij2

-1.Zk,j2.Rj2
-1.dk - R j2.L j,j2.Ij2

-1.Rj2
-1.ekLD +

Rj2.Wj2.W j2.l j,j2 + R j2.L j,j2.Ij2
-1.Wj2.Ij2.wj2

 

and secondly@Sk  sk,j2H@-Rj2.L j,j2.Ij2
-1.Lk,j2.Rj2

-1D.ck - Rj2.Z j,j2.Ij2
-1.Zk,j2.Rj2

-1.dk - R j2.Z j,j2.Ij2
-1.Rj2

-1.ekLD +

Rj2.Wj2.W j2.z j,j2 + Rj2.Z j,j2.Ij2
-1.Wj2.Ij2.wj2

 

For j, k = 1, 2, ..., n, we define (6,6)-matrices 

(5) A j,k,1 = sk,j1 
ikjjjjj Rj1.L j,j1.Ij1

-1.Lk,j1.Rj1
-1 - mj1

-1 1 Rj1.L j,j1.Ij1
-1.Zk,j1.Rj1

-1

Rj1.Z j,j1.Ij1
-1.Lk,j1.R j1

-1 Rj1.Z j,j1.Ij1
-1.Zk,j1.Rj1

-1

y{zzzzz 
A j,k,2 = sk,j2 

ikjjjjj R j2.L j,j2.Ij2
-1.Lk,j2.Rj2

-1 - mj2
-1 1 Rj2.L j,j2.Ij2

-1.Zk,j2.Rj2
-1

Rj2.Z j,j2.Ij2
-1.Lk,j2.Rj2

-1 Rj2.Z j,j2.Ij2
-1.Zk,j2.Rj2

-1

y{zzzzz 
and (6)-vectors 

b j,1 =
ikjjjjj Rj1.Wj1.Wj1.l j,j1 + Rj1.L j,j1.Ij1

-1.Wj1.Ij1.wj1 - Sk sk,j1 Rj1.L j,j1.Ij1
-1.Rj1

-1.ek

Rj1.Wj1.Wj1.z j,j1 + Rj1.Z j,j1.Ij1
-1.Wj1.Ij1.wj1 - Sk  sk,j1 R j1.Z j,j1.Ij1

-1.R j1
-1.ek

y{zzzzz 
b j,2 =

ikjjjjj Rj2.Wj2.Wj2.l j,j2 + Rj2.L j,j2.Ij2
-1.Wj2.Ij2.wj2 - Sk sk,j2 Rj2.L j,j2.Ij2

-1.Rj2
-1.ek

Rj2.Wj2.Wj2.z j,j2 + Rj2.Z j,j2.Ij2
-1.Wj2.Ij2.wj2 - Sk  sk,j2 R j2.Z j,j2.Ij2

-1.R j2
-1.ek

y{zzzzz 
Then, equations (3) transform into -ASk  A j,k,1.

ikjjj ck

dk

y{zzzE + b j,1 = -ASk  A j,k,2.
ikjjj ck

dk

y{zzzE + b j,2, or equivalently 

Sk=1
n HA j,k,1 - A j,k,2L.ikjjj ck

dk

y{zzz = b j,1 - b j,2 for j = 1, 2, ..., n.
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ü Introduction of spherical joints

To replace a hinge j by a spherical joint, we set the vector that represents the axis of the joint to zero, i.e. z̀ j,1 = 0 and

z̀ j,2 = 0. Consequently, z j,i = 0 for all i = 1, 2, ..., n + 1. The equations of (1), (2), (3) that involve z j,i hold trivially.

Example: In the illustration below, joint j = 1 is a hinge, and joint j = 2 is a spherical joint. Therefore, we have z̀2,1 = 0

and z̀2,2 = 0.

ü Algorithm for animation

We describe how to 'integrate' the skeleton from time t over a time interval of length h > 0 to the next frame t + h. The

input to the algorithm are the entities pi, Ri, vi, wi, Ii, mi, and L j,i, Z j,i, e j  for all bodies i = 1, 2, ..., n + 1 and joints

j = 1, 2, ..., n at time t, and the duration h. The values shall comply with the initial conditions (1) and (2). We deter-

mine the vectors c j, d j by solving the system of linear equations 

(6)
ikjjjjjjjj A1,1,1 - A1,1,2 ∫ A1,n,1 - A1,n,2

ª ∏ ª
An,1,1 - An,1,2 ∫ An,n,1 - An,n,2

y{zzzzzzzz.
i
k
jjjjjjjjjjjjjjjjjjj

c1

d1

ª
cn

dn

y
{
zzzzzzzzzzzzzzzzzzz =

ikjjjjjjjj b1,1 - b1,2

ª
bn,1 - bn,2

y{zzzzzzzz
The terms A j,k,1, A j,k,2, b j,1, and b j,2 are defined in (5). Then, the linear accelerations ai, and the torques ti are 

ai = mi
-1 S j=1

n  s j,i c j for i = 1, 2, ..., n + 1 

ti = S j=1
n  s j,iHL j,i.Ri

-1.c j + Z j,i.Ri
-1.d j + Ri

-1.e jL 
We reassign 

vi := vi + ai h for i = 1, 2, ..., n + 1 

pi := pi + vi h 

wi := wi + Ii
-1.H-Wi.Ii.wi + tiL h 

Ri := Ri.exp@Wi hD
The new values pi, Ri, vi, wi represent the dynamic configuration of the skeleton at time t + h and are the output of the

algorithm. (The (3,3)-matrix exp@Wi hD = ‚
k=0

¶ HWi hLk ê Hk !L is orthogonal.)

Remark: Equation (6) contains 6 n unknowns: c j, d j for j = 1, 2, ..., n. However, the matrix is only of rank 5 nh + 3 ns,

where nh is the number of hinges, ns is the number of spherical joints, and nh + ns = n. If joint j is a hinge, the vector d j

is constrained to the plane orthogonal to the axis of the hinge Rj1.zj1 = Rj2.zj2. If joint j is a spherical joint, then d j = 0.
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The solutions c j, d j of (6) are readily obtained via the pseudoinverse. An implementation of the singular value decompo-

sition is stated in the book Numerical Recipes in C++, 2nd edition written by Press, Teucholsky, Vetterling, Flannery.

Remark: The substitution of sk,j1 = dEH j,1L,EHk,1L - dEH j,1L,EHk,2L, and sk,j2 = dEH j,2L,EHk,1L - dEH j,2L,EHk,2L with

di1,i2 = 9 1 if i1 = i2
0 otherwise

transforms an entry of the block matrix of (6) into the alternate form 

A j,k,1 - A j,k,2 =.

+dEH j,1L,EHk,1L ikjjjjj Rj1.L j,j1.Ij1
-1.Lk,j1.R j1

-1 - mj1
-1 1 Rj1.L j,j1.Ij1

-1.Zk,j1.Rj1
-1

Rj1.Z j,j1.Ij1
-1.Lk,j1.Rj1

-1 R j1.Z j,j1.Ij1
-1.Zk,j1.Rj1

-1

y{zzzzz
-dEH j,1L,EHk,2L ikjjjjj Rj1.L j,j1.Ij1

-1.Lk,j2.R j1
-1 - mj1

-1 1 Rj1.L j,j1.Ij1
-1.Zk,j2.Rj1

-1

Rj1.Z j,j1.Ij1
-1.Lk,j2.Rj1

-1 R j1.Z j,j1.Ij1
-1.Zk,j2.Rj1

-1

y{zzzzz
-dEH j,2L,EHk,1L ikjjjjj Rj2.L j,j2.Ij2

-1.Lk,j1.R j2
-1 - mj2

-1 1 Rj2.L j,j2.Ij2
-1.Zk,j1.Rj2

-1

Rj2.Z j,j2.Ij2
-1.Lk,j1.Rj2

-1 R j2.Z j,j2.Ij2
-1.Zk,j1.Rj2

-1

y{zzzzz
+dEH j,2L,EHk,2L ikjjjjj Rj2.L j,j2.Ij2
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